
CS188 Fall 2018 Section 12: Neural Networks and Decision
Trees

1 Perceptron → Neural Nets
Instead of the standard perceptron algorithm, we decide to treat the perceptron as a single node neural network
and update the weights using gradient-based optimization.

In lecture, we covered maximizing likelihood using gradient ascent. We can also choose to minimize a loss
function that calculates the distance between a prediction and the correct label. The loss function for one data
point is Loss(y, y∗) = 1

2 (y − y∗)2, where y∗ is the training label for a given point and y is the output of our
single node network for that point.

We will compute a score z = w1x1 +w2x2, and then predict the output using an activation function g: y = g(z).

1. Given a general activation function g(z) and its derivative g′(z), what is the derivative of the loss function
with respect to w1 in terms of g, g′, y∗, x1, x2, w1, and w2?

∂Loss

∂w1
=

∂

∂w1

1

2
(g(w1x1 + w2x2)− y∗)2

= (g(w1x1 + w2x2)− y∗) ∗ ∂

∂w1
g(w1x1 + w2x2)

= (g(w1x1 + w2x2)− y∗) ∗ g′(w1x1 + w2x2) ∗ ∂

∂w1
(w1x1 + w2x2)

= (g(w1x1 + w2x2)− y∗) ∗ g′(w1x1 + w2x2) ∗ x1

2. We wish to minimize the loss, so we will use gradient descent (not gradient ascent). What is the update
equation for weight wi given ∂Loss

∂wi
and learning rate α?

wi ← wi − α∂Loss
∂w1

3. For this question, the specific activation function that we will use is

g(z) = 1 if z ≥ 0 , or − 1 if z < 0

Use gradient descent to update the weights for a single data point. With initial weights of w1 = 2 and
w2 = −2, what are the updated weights after processing the data point (x1, x2) = (−1, 2), y∗ = 1?

Because the derivative of g is always zero, g′(z) = 0 (although it has two pieces, both pieces are constant
and so have no slope), ∂Loss

∂w1
will be zero, and so the weights will stay w1 = 2 and w2 = −2.

4. What is the most critical problem with this gradient descent training process with that activation function?

The gradient of that activation function is zero, so the weights will not update.

1



2 Decision Trees
You are a geek who hates sports. Trying to look cool at a party, you join a discussion that you belive to be
about football and basketball. You gather information about the two main subjects of discussion, but still
cannot figure out what sports they play.

Sport Position Name Height Weight Age College
? Guard Charlie Ward 6’02” 185 41 Florida State
? Defensive End Julius Peppers 6’07” 283 32 North Carolina

Fortunately, you have brought your CS 188 notes along, and will build some classifiers to deter-
mine which sport is being discussed.

You come across a pamphlet from the Atlantic Coast Conference Basketball Hall of Fame, as well as an Oakland
Raiders team roster, and create the following table:

Sport Position Name Height Weight Age College
Basketball Guard Michael Jordan 6’06” 195 49 North Carolina
Basketball Guard Vince Carter 6’06” 215 35 North Carolina
Basketball Guard Muggsy Bogues 5’03” 135 47 Wake Forest
Basketball Center Tim Duncan 6’11” 260 35 Oklahoma
Football Center Vince Carter 6’02” 295 29 Oklahoma
Football Kicker Tim Duncan 6’00” 215 33 Oklahoma
Football Kicker Sebastian Janikowski 6’02” 250 33 Florida State
Football Guard Langston Walker 6’08” 345 33 California

2.1 Entropy
Before we get started, let’s review the concept of entropy.

1. Give the definition of entropy for an arbitrary probability distribution P (X).
H(X) =

∑
x P (x)log2 (1/P (x))

You can see this as the expected information content of the distribution.

2. Draw a graph of entropy H(X) vs. P (X = 1) for a binary random variable X.

3. What is the entropy of the distribution of Sport in the training data? What about Position?

To calculate the entropy for a random variable, we estimate the probability distribution and use the
formula from the part above.

P (S = football) = 1/2, P (S = basketball) = 1/2 H(S) =
log2(2)

2
+
log2(2)

2
= 1

P (P = guard) = 1/2, P (P = kicker) = 1/4, P (P = center) = 1/4 H(P ) =
log2(2)

2
+
log2(4)

4
+
log2(4)

4
= 3/2

2



2.2 Decision Trees
Central to decision trees is the concept of “splitting” on a variable.

1. To review the concept of “information gain”, calculate it for a split on the Sport variable.

Since the variable that we want to predict is Sport, we want to be caluclating the entropy with respect to
the variable Sport.

(a) i. Distribution before: 8 examples with (1/2, 1/2). (here the first number in the tuple is P(basketball),
and the second number is P(football)).

ii. Entropy before: 8
8

(
log(2)

2 + log(2)
2

)
(b) i. Distribution after: 4 examples with (1, 0), 4 examples with (0, 1)

ii. Entropy after: 4
8

(
log(1)

1

)
+ 4

8

(
log(1)

1

)
= 0

So, the information gain is (1− 0) = 1, which is the greatest possible.

2. Of course, in our situation this would not make sense, as Sport is the very variable we lack at test time.
Now calculate the information gain for the decision “stumps” (one-split trees) created by first splitting on
Position, Name, and College. Do any of these perfectly classify the training data? Does it make sense to
use Name as a variable? Why or why not?

Note that here we will be splitting on different variables but still need to look at the entropy of the
distribution of the variable we need to predict which is sport. So, the before case remains same as before.

(a) Position

i. Distribution after: 4 examples with (3/4, 1/4), 2 examples with (1/2, 1/2), 2 examples with (0,
1).

ii. Entropy after: 4
8

(
log(4/3)

4/3 + log(4)
4

)
+ 2

8

(
log(2)

2 + log(2)
2

)
+ 2

8

(
log(1)

1

)
= 0.66

(b) Name

i. Distribution after: 1 examples with (1, 0), 2 examples with (1/2, 1/2), 1 examples with (0, 1),
2 examples with (1/2, 1/2), 1 example with (0,1), 1 example with (0,1).

ii. Entropy after: 0.5

(c) College

i. Distribution after: 2 examples with (1, 0), 1 examples with (1, 0), 3 examples with (1/3, 2/3),
1 examples with (0, 1), 1 example with (0,1).

ii. Entropy after: 0.34

Note that none of these variables completely classifies the data.

Regarding using the Name as a feature to use in classifying data: since we expect people’s names to be
unique, using them as a feature in learning is akin to using the unique ID of each data point. That is to
say, it’s quite a bad idea—you will overfit to the training data.

3. Decision trees can represent any function of discrete attribute variables. How can we best cast continuous
variables (Height, Weight, and Age) into discrete variables?

Use an inequality relation, Attribute > a, where a is a split point chosen to give the highest information
gain. E.g., an initial split on Age > 34 will perfectly classify the training data.

3



4. Draw a few decision trees that each correctly classify the training data, and show how their predictions
vary on the test set. What algorithm are you following? We use the algorithm as given in the slides, and
for each split use the variable that gives us the maximum information gain. In this given problem, as we
observed above, the variable Age correctly classifies all of the training data, so that is the first variable
that gets picked up, and the algorithm stops at that.

This decision tree would predict test example 1 to be Basketball and test example 2 to be Football.

5. You may have noticed that the testing data has a value for Position that is missing in training data. What
could we do in this case?

When we come to a split on a variable whose value for the test subject is missing in the tree, we could just
choose the most likely branch of the split (the branch that leads to the node with the greatest number of
items).

4



3 Neural Network Representations
You are given a number of functions (a-h) of a single variable, x, which are graphed below. The computation
graphs on the following pages will start off simple and get more complex, building up to neural networks. For
each computation graph, indicate which of the functions below they are able to represent.

(a) 2x (b) 4x− 5
(c)

{
2x− 5 x ≥ 2.5

0 x < 2.5
(d)

{
−2x− 5 x ≤ −2.5

0 x > −2.5

(e)

{
−x+ 3 x ≥ 2

1 x < 2 (f)


3 x ≤ 0

3− x 0 < x ≤ 3

0 x > 3

(g) log(x)

(h)


0.5x x ≤ 0

0 0 < x ≤ 3

3x− 9 x > 3

1. Consider the following computation graph, computing a linear transformation with scalar input x, weight
w, and output o, such that o = wx. Which of the funcions can be represented by this graph? For the
options which can, write out the appropriate value of w.

This graph can only represent (a), with w = 2. Since there is no bias term, the line must pass through
the origin.

5



2. Now we introduce a bias term b into the graph, such that o = wx+ b (this is known as an affine function).
Which of the functions can be represented by this network? For the options which can, write out an
appropriate value of w, b.

(a) with w = 2 and b = 0, and (b) with w = 4 and b = −5

3. We can introduce a non-linearity into the network as indicated below. We use the ReLU non-linearity,
which has the form ReLU(x) = max(0, x). Now which of the functions can be represented by this neural
network with weight w and bias b? For the options which can, write out an appropriate value of w, b.

With the output coming directly from the ReLU, this cannot produce any values less than zero. It can
produce (c) with w = 2 and b = −5, and (d) with w = −2 and b = −5

4. Now we consider neural networks with multiple affine transformations, as indicated below. We now have
two sets of weights and biases w1, b1 and w2, b2. We denote the result of the first transformation h such
that h = w1x + b1, and o = w2h + b2. Which of the functions can be represented by this network? For
the options which can, write out appropriate values of w1, w2, b1, b2.

Applying multiple affine transformations (with no non-linearity in between) is not any more powerful than
a single affine function: w2(w1x + b1) + b2 = w2w1x + w2b1 + b2, so this is just a affine function with
different coefficients. The functions we can represent are the same as in 1, if we choose w1 = w,w2 =
0, b1 = 0, b2 = b: (a) with w1 = 2, w2 = 1, b1 = 0, b2 = 0, and (b) with w1 = 4, w2 = 1, b1 = 0, b2 = −5.

6



5. Next we add a ReLU non-linearity to the network after the first affine transformation, creating a hidden
layer. Which of the functions can be represented by this network? For the options which can, write out
appropriate values of w1, w2, b1, b2.

(c), (d), and (e). The affine transformation after the ReLU is capable of stretching (or flipping) and
shifting the ReLU output in the vertical dimension. The parameters to produce these are:
(c) with w1 = 2, b1 = −5, w2 = 1, b2 = 0, (d) with w1 = −2, b1 = −5, w2 = 1, b2 = 0, and (e) with
w1 = 1, b1 = −2, w2 = −1, b2 = 1

6. Now we add another hidden layer to the network, as indicated below. Which of the functions can be
represented by this network?

(c), (d), (e), and (f). The network can represent all the same functions as Q5 (because note that we
could have w2 = 1 and b2 = 0). In addition it can represent (f): the first ReLU can produce the first flat
segment, the affine transformation can flip and shift the resulting curve, and then the second ReLU can
produce the second flat segment (with the final affine layer not doing anything). Note that (h) cannot be
produced since its line has only one flat segment (and the affine layers can only scale, shift, and flip the
graph in the vertical dimension; they can’t rotate the graph).

7



7. We’d like to consider using a neural net with just one hidden layer, but have it be larger – a hidden layer
of size 2. Let’s first consider using just two affine functions, with no nonlinearity in between. Which of
the functions can be represented by this network?

(a) and (b). With no non-linearity, this reduces to a single affine function (in the same way as Q4)

8. Now we’ll add a non-linearity between the two affine layers, to produce the neural network below with a
hidden layer of size 2. Which of the functions can be represented by this network?

All functions except for (g). Note that we can recreate any network from (5) by setting w4 to 0, so this
allows us to produce (c), (d) and (e). To produce the rest of the functions, note that h′1 and h′2 will be
two independent functions with a flat part lying on the x-axis, and a portion with positive slope. The
final layer takes a weighted sum of these two functions. To produce (a) and (b), the flat portion of one
ReLU should start at the point where the other ends (x = 0 for (a), or x = 1 for (b). The final layer

8



then vertically flips the ReLU sloping down and adds it to the one sloping up, producing a single sloped
line. To produce (h), the ReLU sloping down should have its flat portion end (at x = 0 before the other’s
flat portion begins (at x = 3). The down-sloping one is again flipped and added to the up-sloping. To
produce (f), both ReLUs should have equal slope, which will cancel to produce the first flat portion above
the x-axis.

9


