
CS188 Fall 2018 Review: Final Preparation

1 . Bounded suboptimal search: weighted A*
In this class you met A*, an algorithm for informed search guaranteed to return an optimal solution when given an
admissible heuristic. Often in practical applications it is too expensive to find an optimal solution, so instead we
search for good suboptimal solutions.

Weighted A* is a variant of A* commonly used for suboptimal search. Weighted A* is exactly the same as A* but
where the f-value is computed differently:

f(n) = g(n) + ε h(n)

where ε ≥ 1 is a parameter given to the algorithm. In general, the larger the value of ε, the faster the search is, and
the higher cost of the goal found.

Pseudocode for weighted A* tree search is given below. NOTE: The only differences from the A* tree search
pseudocode presented in the lectures are: (1) fringe is assumed to be initialized with the start node before this
function is called (this will be important later), and (2) now Insert takes ε as a parameter so it can compute the
correct f -value of the node.

1: function Weighted-A*-Tree-Search(problem, fringe, ε)
2: loop do
3: if fringe is empty then return failure
4: node← Remove-Front(fringe)
5: if Goal-Test(problem, State[node]) then return node
6: for child-node in child-nodes do
7: fringe← Insert(child-node, fringe, ε)

(a) We’ll first examine how weighted A* works on the following graph:
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Execute weighted A* on the above graph with ε = 2, completing the following table. To save time, you can
optionally just write the nodes added to the fringe, with their g and f values.
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node Goal? fringe
- - {S : g = 0, f = 16}

S No {S → A : g = 5, f = 7; S → B : g = 6, f = 20}

(b) After running weighted A* with weight ε ≥ 1 a goal node G is found, of cost g(G). Let C∗ be the optimal
solution cost, and suppose the heuristic is admissible. Select the strongest bound below that holds, and provide
a proof.

© g(G) ≤ εC∗ © g(G) ≤ C∗ + ε © g(G) ≤ C∗ + 2ε © g(G) ≤ 2ε C∗ © g(G) ≤ ε2 C∗

Proof: (Partial credit for reasonable proof sketches.)

(c) Weighted A* includes a number of other algorithms as special cases. For each of the following, name the
corresponding algorithm.

(i) ε = 1.

Algorithm:

(ii) ε = 0.

Algorithm:

(iii) ε→∞ (i.e., as ε becomes arbitrarily large).

Algorithm:
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(d) Here is the same graph again:
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(i) Execute weighted A* on the above graph with ε = 1, completing the following table as in part (a):

node Goal? fringe

(ii) You’ll notice that weighted A* with ε = 1 repeats computations performed when run with ε = 2. Is there
a way to reuse the computations from the ε = 2 search by starting the ε = 1 search with a different fringe?
Let F denote the set that consists of both (i) all nodes the fringe the ε = 2 search ended with, and (ii)
the goal node G it selected. Give a brief justification for your answer.

© Use F as new starting fringe
© Use F with goal G removed as new starting fringe
© Use F as new starting fringe, updating the f -values to account for the new ε
© Use F with goal G removed as new starting fringe, updating the f -values to account for the new ε
© Initialize the new starting fringe to all nodes visited in previous search
© Initialize the new starting fringe to all nodes visited in previous search, updating the f -values to ac-
count for the new ε
© It is not possible to reuse computations, initialize the new starting fringe as usual

Justification:
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2 . Crossword Puzzles as CSPs
You are developing a program to automatically solve crossword puzzles, because you think a good income source for
you might be to submit them to the New York Times ($200 for a weekday puzzle, $1000 for a Sunday).1 For those
unfamiliar with crossword puzzles, a crossword puzzle is a game in which one is given a grid of squares that must be
filled in with intersecting words going from left to right and top to bottom. There are a given set of starting positions
for words (in the grid below, the positions 1, 2, 3, 4, and 5), where words must be placed going across (left to right)
or down (top to bottom). At any position where words intersect, the letters in the intersecting words must match.
Further, no two words in the puzzle can be identical. An example is the grid below, in which the down words (1, 2,
and 3) are DEN, ARE, and MAT, while the across words (1, 4, and 5) are DAM, ERA, and NET.

Example Crossword Grid and Solution

1D 2A 3M
4E R A
5N E T

A part of your plan to make crosswords, you decide you will create a program that uses the CSP solving techniques
you have learned in CS 188, since you want to make yourself obsolete at your own job from the get-go. Your first
task is to choose the representation of your problem. You start with a dictionary of all the words you could put in
the crossword puzzle, where the dictionary is of size K and consists of the words {d1, d2, . . . , dK}. Assume that you
are given a grid with N empty squares and M different entries for words (and there are 26 letters in the English
language). In the example above, N = 9 and M = 6 (three words across and three words down).

You initially decide to use words as the variables in your CSP. Let D1 denote the first down word, D2 the second,
D3 the third, etc., and similarly let Ak denote the kth across word. For example, in the crossword above, A1 = DAM,
D1 = DEN, D2 = ARE, and so on. Let D1[i] denote the letter in the ith position of the word D1.

(a) What is the size of the state space for this CSP?

(b) Precisely (i.e. use mathematical notation to) describe the constraints of the CSP when we use words as variables.

After defining your CSP, you decide to go ahead and make a small crossword using the grid below. Assume that you
use the words on the right as your dictionary.

Crossword Grid Dictionary Words
1 2 3 4

5

6

7

ARCS, BLAM, BEAR, BLOGS, LARD, LARP,

GAME, GAMUT, GRAMS, GPS, MDS, ORCS, WARBLER

1http://www.nytimes.com/2009/07/19/business/media/19askthetimes.html
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(c) Enforce all unary constraints by crossing out values in the table below.

D1 ARCS BLAM BEAR BLOGS LARD LARP GPS MDS GAME GAMUT GRAMS ORCS WARBLER

D2 ARCS BLAM BEAR BLOGS LARD LARP GPS MDS GAME GAMUT GRAMS ORCS WARBLER

D3 ARCS BLAM BEAR BLOGS LARD LARP GPS MDS GAME GAMUT GRAMS ORCS WARBLER

D4 ARCS BLAM BEAR BLOGS LARD LARP GPS MDS GAME GAMUT GRAMS ORCS WARBLER

A1 ARCS BLAM BEAR BLOGS LARD LARP GPS MDS GAME GAMUT GRAMS ORCS WARBLER

A5 ARCS BLAM BEAR BLOGS LARD LARP GPS MDS GAME GAMUT GRAMS ORCS WARBLER

A6 ARCS BLAM BEAR BLOGS LARD LARP GPS MDS GAME GAMUT GRAMS ORCS WARBLER

A7 ARCS BLAM BEAR BLOGS LARD LARP GPS MDS GAME GAMUT GRAMS ORCS WARBLER

(d) Assume that in backtracking search, we assign A1 to be GRAMS. Enforce unary constraints, and in addition,
cross out all the values eliminated by forward checking against A1 as a result of this assignment.

D1 ARCS BLAM BEAR BLOGS LARD LARP GPS MDS GAME GAMUT GRAMS ORCS WARBLER

D2 ARCS BLAM BEAR BLOGS LARD LARP GPS MDS GAME GAMUT GRAMS ORCS WARBLER

D3 ARCS BLAM BEAR BLOGS LARD LARP GPS MDS GAME GAMUT GRAMS ORCS WARBLER

D4 ARCS BLAM BEAR BLOGS LARD LARP GPS MDS GAME GAMUT GRAMS ORCS WARBLER

A1 ARCS BLAM BEAR BLOGS LARD LARP GPS MDS GAME GAMUT GRAMS ORCS WARBLER

A5 ARCS BLAM BEAR BLOGS LARD LARP GPS MDS GAME GAMUT GRAMS ORCS WARBLER

A6 ARCS BLAM BEAR BLOGS LARD LARP GPS MDS GAME GAMUT GRAMS ORCS WARBLER

A7 ARCS BLAM BEAR BLOGS LARD LARP GPS MDS GAME GAMUT GRAMS ORCS WARBLER

(e) Now let’s consider how much arc consistency can prune the domains for this problem, even when no assignments
have been made yet. I.e., assume no variables have been assigned yet, enforce unary constraints first, and then
enforce arc consistency by crossing out values in the table below.

D1 ARCS BLAM BEAR BLOGS LARD LARP GPS MDS GAME GAMUT GRAMS ORCS WARBLER

D2 ARCS BLAM BEAR BLOGS LARD LARP GPS MDS GAME GAMUT GRAMS ORCS WARBLER

D3 ARCS BLAM BEAR BLOGS LARD LARP GPS MDS GAME GAMUT GRAMS ORCS WARBLER

D4 ARCS BLAM BEAR BLOGS LARD LARP GPS MDS GAME GAMUT GRAMS ORCS WARBLER

A1 ARCS BLAM BEAR BLOGS LARD LARP GPS MDS GAME GAMUT GRAMS ORCS WARBLER

A5 ARCS BLAM BEAR BLOGS LARD LARP GPS MDS GAME GAMUT GRAMS ORCS WARBLER

A6 ARCS BLAM BEAR BLOGS LARD LARP GPS MDS GAME GAMUT GRAMS ORCS WARBLER

A7 ARCS BLAM BEAR BLOGS LARD LARP GPS MDS GAME GAMUT GRAMS ORCS WARBLER

(f) How many solutions to the crossword puzzle are there? Fill them (or the single solution if there is only one) in
below.

1 2 3 4

5

6

7

1 2 3 4

5

6

7

1 2 3 4

5

6

7

Your friend suggests using letters as variables instead of words, thinking that sabotaging you will be funny. Starting
from the top-left corner and going left-to-right then top-to-bottom, let X1 be the first letter, X2 be the second, X3

the third, etc. In the very first example, X1 = D, X2 = A, and so on.

(g) What is the size of the state space for this formulation of the CSP?

(h) Assume that in your implementation of backtracking search, you use the least constraining value heuristic.
Assume that X1 is the first variable you choose to instantiate. For the crossword puzzle used in parts (c)-(f),
what letter(s) might your search assign to X1?
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3 . Game Trees
The following problems are to test your knowledge of Game Trees.

(a) Minimax

The first part is based upon the following tree. Upward triangle nodes are maximizer nodes and downward are
minimizers. (small squares on edges will be used to mark pruned nodes in part (ii))

8

�

6

�

7

�

5

�

�

9

�

2

�

�

8

�

10

�

2

�

�

3

�

2 4

�

�

0

�

5

�

6

�

�

�

(i) Complete the game tree shown above by filling in values on the maximizer and minimizer nodes.

(ii) Indicate which nodes can be pruned by marking the edge above each node that can be pruned (you do
not need to mark any edges below pruned nodes). In the case of ties, please prune any nodes that could
not affect the root node’s value. Fill in the bubble below if no nodes can be pruned.

© No nodes can be pruned
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(b) Food Dimensions

The following questions are completely unrelated to the above parts.

Pacman is playing a tricky game. There are 4 portals to food dimensions. But, these portals are guarded by
a ghost. Furthermore, neither Pacman nor the ghost know for sure how many pellets are behind each portal,
though they know what options and probabilities there are for all but the last portal.

Pacman moves first, either moving West or East. After which, the ghost can block 1 of the portals available.

You have the following gametree. The maximizer node is Pacman. The minimizer nodes are ghosts and the
portals are chance nodes with the probabilities indicated on the edges to the food. In the event of a tie, the
left action is taken. Assume Pacman and the ghosts play optimally.

P1

55

2
5

70

3
5

P2

30

1
10

70

9
10

West

P3

45

1
3

75

2
3

P4

X

1
2

Y

1
2

East

(i) Fill in values for the nodes that do not depend on X and Y .

(ii) What conditions must X and Y satisfy for Pacman to move East? What about to definitely reach
the P4? Keep in mind that X and Y denote numbers of food pellets and must be whole numbers:
X,Y ∈ {0, 1, 2, 3, . . . }.

To move East:

To reach P4:
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4 . Discount MDPs

Consider the above gridworld. An agent is currently on grid cell S, and would like to collect the rewards that lie on
both sides of it. If the agent is on a numbered square, its only available action is to Exit, and when it exits it gets
reward equal to the number on the square. On any other (non-numbered) square, its available actions are to move
East and West. Note that North and South are never available actions.

If the agent is in a square with an adjacent square downward, it does not always move successfully: when the agent
is in one of these squares and takes a move action, it will only succeed with probability p. With probability 1 − p,
the move action will fail and the agent will instead move downwards. If the agent is not in a square with an adjacent
space below, it will always move successfully.

For parts (a) and (b), we are using discount factor γ ∈ [0, 1].

(a) Consider the policy πEast, which is to always move East (right) when possible, and to Exit when that is the
only available action. For each non-numbered state x in the diagram below, fill in V πEast(x) in terms of γ and p.

(b) Consider the policy πWest, which is to always move West (left) when possible, and to Exit when that is the
only available action. For each non-numbered state x in the diagram below, fill in V πWest(x) in terms of γ and p.
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(c) For what range of values of p in terms of γ is it optimal for the agent to go West (left) from the start state
(S)?

Range:

(d) For what range of values of p in terms of γ is πWest the optimal policy?

Range:

(e) For what range of values of p in terms of γ is πEast the optimal policy?

Range:

Recall that in approximate Q-learning, the Q-value is a weighted sum of features: Q(s, a) =
∑
i wifi(s, a). To

derive a weight update equation, we first defined the loss function L2 = 1
2 (y −

∑
k wkfk(x))2 and found dL2/dwm =

−(y−
∑
k wkfk(x))fm(x). Our label y in this set up is r+ γmaxaQ(s′, a′). Putting this all together, we derived the

gradient descent update rule for wm as wm ← wm + α (r + γmaxaQ(s′, a′)−Q(s, a)) fm(s, a).

In the following question, you will derive the gradient descent update rule for wm using a different loss function:

L1 =

∣∣∣∣∣y −∑
k

wkfk(x)

∣∣∣∣∣
(f) Find dL1/dwm. Show work to have a chance at receiving partial credit. Ignore the non-differentiable point.

(g) Write the gradient descent update rule for wm, using the L1 loss function.
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5 . Q-Learning Strikes Back
Consider the grid-world given below and Pacman who is trying to learn the optimal policy. If an action results in
landing into one of the shaded states the corresponding reward is awarded during that transition. All shaded states
are terminal states, i.e., the MDP terminates once arrived in a shaded state. The other states have the North, East,
South, West actions available, which deterministically move Pacman to the corresponding neighboring state (or have
Pacman stay in place if the action tries to move out of the grad). Assume the discount factor γ = 0.5 and the
Q-learning rate α = 0.5 for all calculations. Pacman starts in state (1, 3).

(a) What is the value of the optimal value function V ∗ at the following states:

V ∗(3, 2) = V ∗(2, 2) = V ∗(1, 3) =

(b) The agent starts from the top left corner and you are given the following episodes from runs of the agent
through this grid-world. Each line in an Episode is a tuple containing (s, a, s′, r).

Episode 1 Episode 2 Episode 3
(1,3), S, (1,2), 0 (1,3), S, (1,2), 0 (1,3), S, (1,2), 0
(1,2), E, (2,2), 0 (1,2), E, (2,2), 0 (1,2), E, (2,2), 0
(2,2), S, (2,1), -100 (2,2), E, (3,2), 0 (2,2), E, (3,2), 0

(3,2), N, (3,3), +100 (3,2), S, (3,1), +80

Using Q-Learning updates, what are the following Q-values after the above three episodes:

Q((3,2),N) = Q((1,2),S) = Q((2, 2), E) =

(c) Consider a feature based representation of the Q-value function:

Qf (s, a) = w1f1(s) + w2f2(s) + w3f3(a)

f1(s) : The x coordinate of the state f2(s) : The y coordinate of the state

f3(N) = 1, f3(S) = 2, f3(E) = 3, f3(W ) = 4

(i) Given that all wi are initially 0, what are their values after the first episode:

w1 = w2 = w3 =

(ii) Assume the weight vector w is equal to (1, 1, 1). What is the action prescribed by the Q-function in state
(2, 2) ?
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6 . Probability
(a) Consider the random variables A,B, and C. Circle all of the following equalities that are always true, if any.

1. P(A,B) = P(A)P(B)−P(A|B)

2. P(A,B) = P(A)P(B)

3. P(A,B) = P(A|B)P(B) + P(B|A)P(A)

4. P(A) =
∑
b∈B P(A|B = b)P(B = b)

5. P(A,C) =
∑
b∈B P(A|B = b)P(C|B = b)P(B = b)

6. P(A,B,C) = P(C|A)P(B|C,A)P(A)

Now assume that A and B both can take on only the values true and false (A ∈ {true, false} and B ∈ {true, false}).
You are given the following quantities:

P(A = true) = 1
2

P(B = true | A = true) = 1
P(B = true) = 3

4

(b) What is P(B = true | A = false)?
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7 . Bayes’ Nets: Short Questions
(a) Bayes’ Nets: Conditional Independence

Based only on the structure of the (new) Bayes’ Net given below, circle whether the following conditional
independence assertions are guaranteed to be true, guaranteed to be false, or cannot be determined by the
structure alone.Note: The ordering of the three answer columns might have been switched relative to previous
exams!

1 A ⊥⊥ C Guaranteed false Cannot be determined Guaranteed true

2 A ⊥⊥ C | E Guaranteed false Cannot be determined Guaranteed true

3 A ⊥⊥ C | G Guaranteed false Cannot be determined Guaranteed true

4 A ⊥⊥ K Guaranteed false Cannot be determined Guaranteed true

5 A ⊥⊥ G | D,E, F Guaranteed false Cannot be determined Guaranteed true

6 A ⊥⊥ B | D,E, F Guaranteed false Cannot be determined Guaranteed true

7 A ⊥⊥ C | D,F,K Guaranteed false Cannot be determined Guaranteed true

8 A ⊥⊥ G | D Guaranteed false Cannot be determined Guaranteed true
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(b) Bayes’ Nets: Elimination of a Single Variable

Assume we are running variable elimination, and we currently have the following three factors:

A B f1(A,B)
+a +b 0.1
+a −b 0.5
−a +b 0.2
−a −b 0.5

A C D f2(A,C,D)
+a +c +d 0.2
+a +c −d 0.1
+a −c +d 0.5
+a −c −d 0.1
−a +c +d 0.5
−a +c −d 0.2
−a −c +d 0.5
−a −c −d 0.2

B D f3(B,D)
+b +d 0.2
+b −d 0.2
−b +d 0.5
−b −d 0.1

The next step in the variable elimination is to eliminate B.

(i) Which factors will participate in the elimination process of B?

(ii) Perform the join over the factors that participate in the elimination of B. Your answer should be a table
similar to the tables above, it is your job to figure out which variables participate and what the numerical
entries are.

(iii) Perform the summation over B for the factor you obtained from the join. Your answer should be a table
similar to the tables above, it is your job to figure out which variables participate and what the numerical
entries are.
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(c) Elimination Sequence

For the Bayes’ net shown below, consider the query P (A|H = +h), and the variable elimination ordering
B,E,C, F,D.

(i) In the table below fill in the factor generated at each step — we did the first row for you.

A	   B	   C	  

D E	   F	  

H
Variable Factor Current

Eliminated Generated Factors

(no variable eliminated yet) (no factor generated) P (A), P (B), P (C), P (D|A), P (E|B), P (F |C), P (+h|D,E, F )

B f1(E) P (A), P (C), P (D|A), P (F |C), P (+h|D,E, F ), f1(E)

E

C

F

D

(ii) Which is the largest factor generated? Assuming all variables have binary-valued domains, how many
entries does the corresponding table have?

(d) Sampling

(i) Consider the query P (A| − b,−c). After rejection sampling we end up with the following four samples:
(+a,−b,−c,+d), (+a,−b,−c,−d), (+a,−b,−c,−d), (−a,−b,−c,−d). What is the resulting estimate of
P (+a| − b,−c)?

.

(ii) Consider again the query P (A| − b,−c). After likelihood weighting sampling we end up with the fol-
lowing four samples: (+a,−b,−c,−d), (+a,−b,−c,−d), (−a,−b,−c,−d), (−a,−b,−c,+d), and respective
weights: 0.1, 0.1, 0.3, 0.3. What is the resulting estimate of P (+a| − b,−c) ?
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8 . HMM: Where is the key?
The cs188 staff have a key to the homework bin. It is the master key that unlocks the bins to many classes, so we
take special care to protect it.

Every day John Duchi goes to the gym, and on the days he has the key, 60% of the time he forgets it next to the
bench press. When that happens one of the other three GSIs, equally likely, always finds it since they work out right
after. Jon Barron likes to hang out at Brewed Awakening and 50% of the time he is there with the key, he forgets
the key at the coffee shop. Luckily Lubomir always shows up there and finds the key whenever Jon Barron forgets it.
Lubomir has a hole in his pocket and ends up losing the key 80% of the time somewhere on Euclid street. However,
Arjun takes the same path to Soda and always finds the key. Arjun has a 10% chance to lose the key somewhere in
the AI lab next to the Willow Garage robot, but then Lubomir picks it up.

The GSIs lose the key at most once per day, around noon (after losing it they become extra careful for the rest of
the day), and they always find it the same day in the early afternoon.

(a) Draw on the left the Markov chain capturing the location of the key and fill in the transition probability table
on the right. In this table, the entry of row JD and column JD corresponds to P (Xt+1 = JD|Xt = JD), the
entry of row JD and column JB corresponds to P (Xt+1 = JB|Xt = JD), and so forth.

JD JB LB AS

JD

JB

LB

AS 0.10

Monday early morning Prof. Abbeel handed the key to Jon Barron. (The initial state distribution assigns probability
1 to X0 = JB and probability 0 to all other states.)

(b) The homework is due Tuesday at midnight so the GSIs need the key to open the bin. What is the probability
for each GSI to have the key at that time? Let X0, XMon and XTue be random variables corresponding to who
has the key when Prof. Abbeel hands it out, who has the key on Monday evening, and who has the key on
Tuesday evening, respectively. Fill in the probabilities in the table below.

P (X0) P (XMon) P (XTue)

JD 0

JB 1

LB 0

AS 0

(c) The GSIs like their jobs so much that they decide to be professional GSIs permanently. They assign an extra
credit homework (make computers truly understand natural language) due at the end of time. What is the
probability that each GSI holds the key at a point infinitely far in the future. Hint:

P∞(x) =
∑

x′ P (Xnext day = x | Xcurrent day = x′)P∞(x
′)
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Every evening the GSI who has the key feels obliged to write a short anonymous report on their opinion about the
state of AI. Arjun and John Duchi are optimistic that we are right around the corner of solving AI and have an 80%
chance of writing an optimistic report, while Lubomir and Jon Barron have an 80% chance of writing a pessimistic
report. The following are the titles of the first few reports:

Monday: Survey: Computers Become Progressively Less Intelligent (pessimistic)
Tuesday: How to Solve Computer Vision in Three Days (optimistic)

(d) In light of that new information, what is the probability distribution for the key on Tuesday midnight given
that Jon Barron has it Monday morning? You may leave the result as a ratio or unnormalized.

On Thursday afternoon Prof. Abbeel noticed a suspiciously familiar key on top of the Willow Garage robot’s head.
He thought to himself, “This can’t possibly be the master key.” (He was wrong!) Lubomir managed to snatch the
key and distract him before he inquired more about it and is the key holder Thursday at midnight (i.e., XThu = LB).
In addition, the Friday report is this:

Thursday: ??? (report unknown)
Friday: AI is a scam. I know it, you know it, it is time for the world to know it! (pessimistic)

(e) Given that new information, what is the probability distribution for the holder of the key on Friday at midnight?

(f) Prof. Abbeel recalls that he saw Lubomir holding the same key on Tuesday night. Given this new information
(in addition to the information in the previous part), what is the probability distribution for the holder of the
key on Friday at midnight?

(g) Suppose in addition that we know that the titles of the reports for the rest of the week are:

Saturday: Befriend your PC now. Soon your life will depend on its wishes (optimistic)
Sunday: How we got tricked into studying AI and how to change field without raising suspicion (pessimistic)

Will that new information change our answer to (f)? Choose one of these options:

1. Yes, reports for Saturday and Sunday affect our prediction for the key holder on Friday.

2. No, our prediction for Friday depends only on what happened in the past.
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9 . Ghostbusters
Suppose Pacman gets a noisy observation of a ghost’s location for T moves, and then may guess where the ghost
is at timestep T to eat it. To model the problem, you use an HMM, where the ith hidden state is the location of
the ghost at timestep i and the ith evidence variable is the noisy observation of the ghost’s location at time step i.
Assume Pacman always acts rationally.

(a) If Pacman guesses correctly, he gets to eat the ghost resulting in a utility of 20. Otherwise he gets a utility of
0. If he does not make any guess, he gets a utility of 0.

Which of the following algorithms could Pacman use to determine the ghost’s most likely location at time T?
(Don’t worry about runtime.)

� Viterbi
� Forward algorithm for HMMs
� Particle filtering with a lot of particles
� Variable elimination on the Bayes Net representing the HMM
� None of the above, Pacman should use

(b) In the previous part, there was no penalty for guessing. Now, Pacman has to pay 10 utility in order to try to
eat the ghost. Once he pays, he still gets 20 utility for correctly guessing and eating the ghost, and 0 utility
for an incorrect guess. Pacman determines that the most likely ghost location at time T is (x, y), and the
probability of that location is p.

What is the expected utility of guessing that the ghost is at (x, y), as a function of p?

When should Pacman guess that the ghost is at (x, y)?

© Never (he should not guess)
© If p < .
© If p > .
© Always

(c) Now, in addition to the −10 utility for trying to eat the ghost, Pacman can also pay 5 utility to learn the exact
location of the ghost. (So, if Pacman pays the 5 utility and eats the ghost, he pays 15 utility and gains 20
utility for a total of 5 utility.)

When should Pacman pay the 5 utility to find the exact ghost location?

© Never
© If p < .
© If p > .
© Always

(d) Now, Pacman can try to eat one out of Blinky (B), Inky (I) and Clyde (C) (three of the ghosts). He has some
preferences about which one to eat, but he’s afraid that his preferences are not rational. Help him out by
showing him a utility function that matches his listed preferences, or mark “Not possible” if no rational utility
function will work. You may choose any real number for each utility value. If “Not possible” is marked,
we will ignore any written utility function.

(i) The preferences are B ≺ I and I ≺ C and [0.5, B; 0.5, C] ≺ I

U(B) U(I) U(C)
© Not possible

(ii) The preferences are I ≺ B and [0.5, B; 0.5, C] ≺ C and [0.5, B; 0.5, C] ≺ [0.5, B; 0.5, I]

U(B) U(I) U(C)
© Not possible
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10 . Perceptrons
(a) Consider a multi-class perceptron for classes A,B, and C with current weight vectors:

wA = (1,−4, 7), wB = (2,−3, 6), wC = (7, 9,−2)

A new training sample is now considered, which has feature vector f(x) = (−2, 1, 3) and label y∗ = B. What
are the resulting weight vectors after the perceptron has seen this example and updated the weights?

wA = wB = wC =

(b) A single perceptron can compute the XOR function.

© True © False

(c) A perceptron is guaranteed to learn a separating decision boundary for a separable dataset within a finite
number of training steps.

© True © False

(d) Given a linearly separable dataset, the perceptron algorithm is guaranteed to find a max-margin separating
hyperplane.

© True © False

(e) You would like to train a neural network to classify digits. Your network takes as input an image and outputs
probabilities for each of the 10 classes, 0-9. The network’s prediction is the class that it assigns the highest
probability to. From the following functions, select all that would be suitable loss functions to minimize using
gradient descent:

� The square of the difference between the correct digit and the digit predicted by your network

� The probability of the correct digit under your network

� The negative log-probability of the correct digit under your network

© None of the above
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11 . Naive Bayes: Pacman or Ghost?
You are standing by an exit as either Pacmen or ghosts come out of it. Every time someone comes out, you get
two observations: a visual one and an auditory one, denoted by the random variables Xv and Xa, respectively. The
visual observation informs you that the individual is either a Pacman (Xv = 1) or a ghost (Xv = 0). The auditory
observation Xa is defined analogously. Your observations are a noisy measurement of the individual’s true type,
which is denoted by Y . After the indiviual comes out, you find out what they really are: either a Pacman (Y = 1)
or a ghost (Y = 0). You have logged your observations and the true types of the first 20 individuals:

individual i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

first observation X
(i)
v 0 0 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 0 0 0

second observation X
(i)
a 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

individual’s type Y (i) 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0

The superscript (i) denotes that the datum is the ith one. Now, the individual with i = 20 comes out, and you want

to predict the individual’s type Y (20) given that you observed X
(20)
v = 1 and X

(20)
a = 1.

(a) Assume that the types are independent, and that the observations are independent conditioned on the type.

You can model this using näıve Bayes, with X
(i)
v and X

(i)
a as the features and Y (i) as the labels. Assume the

probability distributions take on the following form:

P (X(i)
v = xv|Y (i) = y) =

{
pv if xv = y

1− pv if xv 6= y

P (X(i)
a = xa|Y (i) = y) =

{
pa if xa = y

1− pa if xa 6= y

P (Y (i) = 1) = q

for pv, pa, q ∈ [0, 1] and i ∈ N.

X
(i)
v X

(i)
a

Y (i)

(i) What’s the maximum likelihood estimate of pv, pa and q?

pv = pa = q =

(ii) What is the probability that the next individual is Pacman given your observations? Express your answer
in terms of the parameters pv, pa and q (you might not need all of them).

P (Y (20) = 1|X(20)
v = 1, X

(20)
a = 1) =
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Now, assume that you are given additional information: you are told that the individuals are actually coming out
of a bus that just arrived, and each bus carries exactly 9 individuals. Unlike before, the types of every 9 consecutive
individuals are conditionally independent given the bus type, which is denoted by Z. Only after all of the 9 individuals
have walked out, you find out the bus type: one that carries mostly Pacmans (Z = 1) or one that carries mostly
ghosts (Z = 0). Thus, you only know the bus type in which the first 18 individuals came in:

individual i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

first observation X
(i)
v 0 0 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 0 0 0

second observation X
(i)
a 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

individual’s type Y (i) 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0

bus j 0 1

bus type Z(j) 0 1

(b) You can model this using a variant of näıve bayes, where now 9 consecutive labels Y (i), . . . , Y (i+8) are condition-
ally independent given the bus type Z(j), for bus j and individual i = 9j. Assume the probability distributions
take on the following form:

P (X(i)
v = xv|Y (i) = y) =

{
pv if xv = y

1− pv if xv 6= y

P (X(i)
a = xa|Y (i) = y) =

{
pa if xa = y

1− pa if xa 6= y

P (Y (i) = 1|Z(j) = z) =

{
q0 if z = 0

q1 if z = 1

P (Z(j) = 1) = r

for p, q0, q1, r ∈ [0, 1] and i, j ∈ N.

X
(i)
v X

(i)
a

Y (i)

X
(i+1)
v X

(i+1)
a

Y (i+1)

. . .

. . .

X
(i+8)
v X

(i+8)
a

Y (i+8)

Z(j)

(i) What’s the maximum likelihood estimate of q0, q1 and r?

q0 = q1 = r =

(ii) Compute the following joint probability. Simplify your answer as much as possible and express it in terms
of the parameters pv, pa, q0, q1 and r (you might not need all of them).

P (Y (20) = 1, X
(20)
v = 1, X

(20)
a = 1, Y (19) = 1, Y (18) = 1) =
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12 . Decision Trees and Other Classifiers
(a) Suppose you have a small training data set of four points in distinct loca-

tions, two from the “+” class and two from the “–” class. For each of the
following conditions, draw a particular training data set (of exactly four
points: +, +, –, and –) that satisfy the conditions. If this is impossible,
mark “Not possible”. If “Not possible” is marked, we will ignore any data points.

For example, if the conditions were “A depth-1 decision tree can perfectly classify
the training data points,” an acceptable answer would be the data points to the
right.

�

� �

�
I�

I�

(i) A linear perceptron with a bias term can perfectly classify the training data points, but a linear perceptron
without a bias term cannot.

I�

I�

© Not possible

(ii) A depth-2 decision tree cannot classify the training data perfectly

I�

I�

© Not possible

(b) You are still trying to classify between “+” and “-”, but your two features now can take on only three possible
values, {−1, 0, 1}. You would like to use a Naive Bayes model with the following CPTs:

X P (X)
- 0.4
+ 0.6

X F1 P (F1|X)
- -1 0.4
- 0 0.5
- 1 0.1
+ -1 0.7
+ 0 0.1
+ 1 0.2

X F2 P (F2|X)
- -1 0.1
- 0 0.1
- 1 0.8
+ -1 0.6
+ 0 0.1
+ 1 0.3

(i) If you observe that F1 = −1 and F2 = −1, how will you classify X using Naive Bayes?
© X = − © X = +

(ii) If you observe that F1 = 0 and F2 = 0, how will you classify X using Naive Bayes?
© X = − © X = +

(iii) If you observe that F1 = 1 and F2 = 1, how will you classify X using Naive Bayes?
© X = − © X = +
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13 . Bayes’ Net Sampling
Assume you are given the following Bayes’ net and the corresponding distributions over the variables in the Bayes’
net.

2*

A

B

C D

P (A)
+a 0.1
-a 0.9

P (B)
+b .7
-b .3

P (C|A,B)
+c +a +b .25
-c +a +b .75
+c -a +b .6
-c -a +b .4
+c +a -b .5
-c +a -b .5
+c -a -b .2
-c -a -b .8

P (D|C)
+d +c .5
-d +c .5
+d -c .8
-d -c .2

(a) Assume we receive evidence that A = +a. If we were to draw samples using rejection sampling, on expectation
what percentage of the samples will be rejected?

(b) Next, assume we observed both A = +a and D = +d. What are the weights for the following samples under
likelihood weighting sampling?

Sample Weight

(+a,−b,+c,+d)

(+a,−b,−c,+d)

(+a,+b,−c,+d)

(c) Given the samples in the previous question, estimate P (−b|+ a,+d).

(d) Assume we need to (approximately) answer two different inference queries for this graph: P (C| + a) and
P (C| + d). You are required to answer one query using likelihood weighting and one query using Gibbs
sampling. In each case you can only collect a relatively small amount of samples, so for maximal accuracy
you need to make sure you cleverly assign algorithm to query based on how well the algorithm fits the query.
Which query would you answer with each algorithm?

Algorithm Query

Likelihood Weighting

Algorithm Query

Gibbs Sampling

Justify your answer:
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