
CS 188
Fall 2018

Introduction to
Artificial Intelligence Written HW 5 Sol.

Self-assessment due: Monday 10/15/2018 at 11:59pm (submit via Gradescope)

For the self assessment, fill in the self assessment boxes in your original submission (you can download
a PDF copy of your submission from Gradescope). For each subpart where your original answer was correct,
write “correct.” Otherwise, write and explain the correct answer.
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Q1. Reinforcement Learning
Imagine an unknown game which has only two states {A,B} and in each state the agent has two actions to choose
from: {Up, Down}. Suppose a game agent chooses actions according to some policy π and generates the following
sequence of actions and rewards in the unknown game:

t st at st+1 rt
0 A Down B 2
1 B Down B -4
2 B Up B 0
3 B Up A 3
4 A Up A -1

Unless specified otherwise, assume a discount factor γ = 0.5 and a learning rate α = 0.5

(a) Recall the update function of Q-learning is:

Q(st, at)← (1− α)Q(st, at) + α(rt + γmax
a′

Q(st+1, a
′))

Assume that all Q-values initialized as 0. What are the following Q-values learned by running Q-learning with
the above experience sequence?

Q(A,Down) = 1 , Q(B,Up) =
7

4

Perform Q-learning update 4 times, once for each of the first 4 observations.
(b) In model-based reinforcement learning, we first estimate the transition function T (s, a, s′) and the reward

function R(s, a, s′). Fill in the following estimates of T and R, estimated from the experience above. Write
“n/a” if not applicable or undefined.

T̂ (A,Up,A) = 1 , T̂ (A,Up,B) = 0 , T̂ (B,Up,A) =
1

2
, T̂ (B,Up,B) =

1

2

R̂(A,Up,A) = −1 , R̂(A,Up,B) = n/a , R̂(B,Up,A) = 3 , R̂(B,Up,B) = 0

Count transitions above and calculate frequencies. Rewards are observed rewards.

(c) To decouple this question from the previous one, assume we had a different experience and ended up with
the following estimates of the transition and reward functions:

s a s′ T̂ (s, a, s′) R̂(s, a, s′)
A Up A 1 10
A Down A 0.5 2
A Down B 0.5 2
B Up A 1 -5
B Down B 1 8

(i) Give the optimal policy π̂∗(s) and V̂ ∗(s) for the MDP with transition function T̂ and reward function R̂.
Hint: for any x ∈ R, |x| < 1, we have 1 + x+ x2 + x3 + x4 + · · · = 1/(1− x).

π̂∗(A) = Up , π̂∗(B) = Down , V̂ ∗(A) = 20 , V̂ ∗(B) = 16 .

Find the optimal policy first, and then use optimal policy to calculate the value function using a Bellman
equation.

(ii) If we repeatedly feed this new experience sequence through our Q-learning algorithm, what values will it
converge to? Assume the learning rate αt is properly chosen so that convergence is guaranteed.

 the values found above, V̂ ∗
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# the optimal values, V ∗

# neither V̂ ∗ nor V ∗

# not enough information to determine

The Q-learning algorithm will not converge to the optimal values V ∗ for the MDP because the experience
sequence and transition frequencies replayed are not necessarily representative of the underlying MDP.
(For example, the true T (A,Down,A) might be equal to 0.75, in which case, repeatedly feeding in the
above experience would not provide an accurate sampling of the MDP.) However, for the MDP with
transition function T̂ and reward function R̂, replaying this experience repeatedly will result in Q-learning
converging to its optimal values V̂ ∗.
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Q2. Policy Evaluation
In this question, you will be working in an MDP with states S, actions A, discount factor γ, transition function T ,
and reward function R.

We have some fixed policy π : S → A, which returns an action a = π(s) for each state s ∈ S. We want to learn
the Q function Qπ(s, a) for this policy: the expected discounted reward from taking action a in state s and then
continuing to act according to π: Qπ(s, a) =

∑
s′ T (s, a, s′)[R(s, a, s′) + γQπ(s′, π(s′)]. The policy π will not change

while running any of the algorithms below.

(a) Can we guarantee anything about how the values Qπ compare to the values Q∗ for an optimal policy π∗?

 Qπ(s, a) ≤ Q∗(s, a) for all s, a

# Qπ(s, a) = Q∗(s, a) for all s, a

# Qπ(s, a) ≥ Q∗(s, a) for all s, a

# None of the above are guaranteed

(b) Suppose T and R are unknown. You will develop sample-based methods to estimate Qπ. You obtain a series
of samples (s1, a1, r1), (s2, a2, r2), . . . (sT , aT , rT ) from acting according to this policy (where at = π(st), for all
t).

(i) Recall the update equation for the Temporal Difference algorithm, performed on each sample in sequence:

V (st)← (1− α)V (st) + α(rt + γV (st+1))

which approximates the expected discounted reward V π(s) for following policy π from each state s, for a
learning rate α.

Fill in the blank below to create a similar update equation which will approximate Qπ using the samples.

You can use any of the terms Q, st, st+1, at, at+1, rt, rt+1, γ, α, π in your equation, as well as
∑

and max
with any index variables (i.e. you could write maxa, or

∑
a and then use a somewhere else), but no other

terms.

Q(st, at)← (1− α)Q(st, at) + α [rt + γQ(st+1, at+1)]

(ii) Now, we will approximate Qπ using a linear function: Q(s, a) =
∑d
i=1 wifi(s, a) for weights w1, . . . , wd

and feature functions f1(s, a), . . . , fd(s, a).

To decouple this part from the previous part, use Qsamp for the value in the blank in part (i) (i.e.
Q(st, at)← (1− α)Q(st, at) + αQsamp).

Which of the following is the correct sample-based update for each wi?

# wi ← wi + α[Q(st, at)−Qsamp]
# wi ← wi − α[Q(st, at)−Qsamp]
# wi ← wi + α[Q(st, at)−Qsamp]fi(st, at)
 wi ← wi − α[Q(st, at)−Qsamp]fi(st, at)
# wi ← wi + α[Q(st, at)−Qsamp]wi
# wi ← wi − α[Q(st, at)−Qsamp]wi

(iii) The algorithms in the previous parts (part i and ii) are:

2 model-based � model-free
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