
CS 188
Fall 2018

Introduction to
Artificial Intelligence Practice Midterm 1

To earn the extra credit, one of the following has to hold true. Please circle and sign.

A I spent 2 or more hours on the practice midterm.

B I spent fewer than 2 hours on the practice midterm, but I believe I have solved all the questions.

Signature:

To simulate midterm setting, print out this practice midterm, complete it in writing, and then scan and upload into
Gradescope. It is due on Saturday 10/6, 11:59pm.
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Exam Instructions:

• You have approximately 2 hours.

• The exam is closed book, closed notes except your one-page crib sheet.

• Please use non-programmable calculators only.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation. All short answer sections can be successfully answered in a few sentences AT MOST.

First name

Last name

SID

First and last name of student to your left

First and last name of student to your right

For staff use only:
Q1. Search: Heuristic Function Properties /6
Q2. Search: Slugs /8
Q3. CSPs: Apple’s New Campus /9
Q4. Bounded Expectimax /18
Q5. Games: Alpha-Beta Pruning /8
Q6. MDPs and RL: Mini-Grids /16
Q7. Utilities: Low/High /8

Total /73
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Q1. [6 pts] Search: Heuristic Function Properties
For the following questions, consider the search problem shown on the left. It has only three states, and three
directed edges. A is the start node and G is the goal node. To the right, four different heuristic functions are defined,
numbered I through IV.

A

B

G

2
3

6
h(A) h(B) h(G)

I 4 1 0
II 5 4 0
III 4 3 0
IV 5 2 0

(a) [4 pts] Admissibility and Consistency

For each heuristic function, circle whether it is admissible and whether it is consistent with respect to the
search problem given above.

Admissible? Consistent?

I Yes No Yes No

II Yes No Yes No

III Yes No Yes No

IV Yes No Yes No

(b) [2 pts] Function Domination

Recall that domination has a specific meaning when talking about heuristic functions.

Circle all true statements among the following.

1. Heuristic function III dominates IV.

2. Heuristic function IV dominates III.

3. Heuristic functions III and IV have no dominance relationship.

4. Heuristic function I dominates IV.

5. Heuristic function IV dominates I.

6. Heuristic functions I and IV have no dominance relationship.
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Q2. [8 pts] Search: Slugs
You are once again tasked with planning ways to get various insects out of a maze. This time, it’s slugs! As shown
in the diagram below to the left, two slugs A and B want to exit a maze via their own personal exits. In each time
step, both slugs move, though each can choose to either stay in place or move into an adjacent free square. The slugs
cannot move into a square that the other slug is moving into. In addition, the slugs leave behind a sticky, poisonous
substance and so they cannot move into any square that either slug has ever been in. For example, if both slugs
move right twice, the maze is as shown in the diagram below to right, with the x squares unpassable to either slug.

You must pose a search problem that will get them to their exits in as few time steps as possible. You may assume
that the board is of size N by M ; all answers should hold for a general instance, not simply the instance shown
above. (You do not need to generalize beyond two slugs.)

(a) [3 pts] How many states are there in a minimal representation of the space? Justify with a brief description of
the components of your state space.

(b) [2 pts] What is the branching factor? Justify with a brief description of the successor function.

(c) [3 pts] Give a non-trivial admissible heuristic for this problem.
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Q3. [9 pts] CSPs: Apple’s New Campus
Apple’s new circular campus is nearing completion. Unfortunately, the chief architect on the project was using
Google Maps to store the location of each individual department, and after upgrading to iOS 6, all the plans for the
new campus were lost!

The following is an approximate map of the campus:

The campus has six offices, labeled 1 through 6, and six departments:

[noitemsep,topsep=0in]Legal (L) Maps Team (M) Prototyping (P) Engineering (E) Tim Cook’s office (T) Secret
Storage (S)

Offices can be next to one another, if they share a wall (for an instance, Offices 1-6). Offices can also be across from
one another (specifically, Offices 1-4, 2-5, 3-6).

The Electrical Grid is connected to offices 1 and 6. The Lake is visible from offices 3 and 4. There are two “halves”
of the campus – South (Offices 1-3) and North (Offices 4-6).

The constraints are as follows:

••••••i. (L)egal wants a view of the lake to look for prior art examples.

ii. (T)im Cook’s office must not be across from (M)aps.

iii. (P)rototyping must have an electrical connection.

iv. (S)ecret Storage must be next to (E)ngineering.

v. (E)ngineering must be across from (T)im Cook’s office.

vi. (P)rototyping and (L)egal cannot be next to one another.

vii. (P)rototyping and (E)ngineering must be on opposite sides of the campus (if one is on the North side, the other
must be on the South side).

viii. No two departments may occupy the same office.
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(a) [3 pts] Constraints. Note: There are multiple ways to model constraint viii. In your answers below, assume
constraint viii is modeled as multiple pairwise constraints, not a large n-ary constraint.

(i) [1 pt] Circle your answers below. Which constraints are unary?

i ii iii iv v vi vii viii

(ii) [1 pt] In the constraint graph for this CSP, how many edges are there?

(iii) [1 pt] Write out the explicit form of constraint iii.

(b) [6 pts] Domain Filtering. We strongly recommend that you use a pencil for the following problems.

(i) [2 pts] The table below shows the variable domains after unary constraints have been enforced and the
value 1 has been assigned to the variable P .

Cross out all values that are eliminated by running Forward Checking after this assignment.

L 3 4

M 1 2 3 4 5 6

P 1

E 1 2 3 4 5 6

T 1 2 3 4 5 6

S 1 2 3 4 5 6

(ii) [4 pts] The table below shows the variable domains after unary constraints have been enforced, the value
1 has been assigned to the variable P , and now the value 3 has been assigned to variable T .

Cross out all values that are eliminated if arc consistency is enforced after this assignment. (Note that
enforcing arc consistency will subsume all previous pruning.)

L 3 4

M 1 2 3 4 5 6

P 1

E 1 2 3 4 5 6

T 3

S 1 2 3 4 5 6
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Q4. [18 pts] Bounded Expectimax
(a) [4 pts] Expectimax. Consider the game tree below, where the terminal values are the payoffs of the game. Fill

in the expectimax values, assuming that player 1 is maximizing expected payoff and player 2 plays uniformly
at random (i.e., each action available has equal probability).

20	
   40	
   0	
   70	
   95	
  5	
  

Left Right Middle 

(b) [2 pts] Again, assume that Player 1 follows an expectimax strategy (i.e., maximizes expected payoff) and Player
2 plays uniformly at random (i.e., each action available has equal probability).

(i) [2 pts] What is Player 1’s expected payoff if she takes the expectimax optimal action?

(ii) [1 pt] Multiple outcomes are possible from Player 1’s expectimax play. What is the worst possible payoff
she could see from that action?

(c) [3 pts] Even if the average outcome is good, Player 1 doesn’t like that very bad outcomes are possible. Therefore,
rather than purely maximizing expected payoff using expectimax, Player 1 chooses to perform a modified search.
In particular, she only considers actions whose worst-case outcome is 10 or better.

(i) [1 pt] Which action does Player 1 choose for this tree?

(ii) [1 pt] What is the expected payoff for that action?

(iii) [1 pt] What is the worst payoff possible for that action?
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(d) [4 pts] Now let’s consider a more general case. Player 1 has the following preferences:

• Player 1 prefers any lottery with worst-case outcome of 10 or higher over any lottery with worst-case
outcome lower than 10.

• Among two lotteries with worst-case outcome of 10 or higher, Player 1 chooses the one with the highest
expected payoff.

• Among two lotteries with worst-case outcome lower than 10, Player 1 chooses the one with the highest
worst-case outcome (breaking ties by highest expected payoff).

Player 2 still always plays uniformly at random.

To compute the appropriate values of tree nodes, Player 1 must consider both expectations and worst-case values
at each node. For each node in the game tree below, fill in a pair of numbers (e, w). Here e is the expected value
under Player 1’s preferences and w is the value of the worst-case outcome under those preferences, assuming
that Player 1 and Player 2 play according to the criteria described above.

0	
   200	
  20	
   80	
   30	
   90	
  40	
   60	
  

70	
  

(e) [4 pts] Now let’s consider the general case, where the lower bound used by Player 1 is a number L not necessarily
equal to 10, and not referring to the particular tree above. Player 2 still plays uniformly at random.

(i) [2 pts] Suppose a Player 1 node has two children: the first child passes up values (e1, w1), and the second
child passes up values (e2, w2). What values (e, w) will be passed up by a Player 1 node if

1. w1 < w2 < L

2. w1 < L < w2

3. L < w1 < w2

(ii) [2 pts] Now consider a Player 2 node with two children: the first child passes up values (e1, w1) and the
second child passes up values (e2, w2). What values (e, w) will be passed up by a Player 2 node if

1. w1 < w2 < L

2. w1 < L < w2

3. L < w1 < w2
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Q5. [8 pts] Games: Alpha-Beta Pruning
For each of the game-trees shown below, state for which values of x the dashed branch with the scissors will be
pruned. If the pruning will not happen for any value of x write “none”. If pruning will happen for all values of x
write “all”.

[Example Tree. Answer: x ≤ 1.]

1

x 3

[Tree 1. Answer: ]

8

x6

4

[Tree 2. Answer: ]
2x5 6

[Tree 3. Answer: ]

2 6

3x4

1 5

[Tree 4. Answer: ]
x

42 5

1
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Q6. [16 pts] MDPs and RL: Mini-Grids
The following problems take place in various scenarios of the gridworld MDP (as in Project 3). In all cases, A is the
start state and double-rectangle states are exit states. From an exit state, the only action available is Exit, which
results in the listed reward and ends the game (by moving into a terminal state X, not shown).

From non-exit states, the agent can choose either Left or Right actions, which move the agent in the corresponding
direction. There are no living rewards; the only non-zero rewards come from exiting the grid.

Throughout this problem, assume that value iteration begins with initial values V0(s) = 0 for all states s.

First, consider the following mini-grid. For now, the discount is γ = 1 and legal movement actions will always succeed
(and so the state transition function is deterministic).

(a) [1 pt] What is the optimal value V ∗(A)?

(b) [1 pt] When running value iteration, remember that we start with V0(s) = 0 for all s. What is the first iteration
k for which Vk(A) will be non-zero?

Let’s kick it up a notch! The Left and Right movement actions are now stochastic and fail with probability f . When
an action fails, the agent moves up or down with probability f/2 each. When there is no square to move up or down
into (as in the one-dimensional case), the agent stays in place. The Exit action does not fail.

For the following mini-grid, the failure probability is f = 0.5. The discount is back to γ = 1.

(c) [1 pt] What is the optimal value V ∗(A)?

(d) [1 pt] When running value iteration, what is the smallest value of k for which Vk(A) will be non-zero?

(e) [1 pt] What will Vk(A) be when it is first non-zero?

(f) [1 pt] After how many iterations k will we have Vk(A) = V ∗(A)? If they will never become equal, write never.

Now consider the following mini-grid. Again, the failure probability is f = 0.5 and γ = 1. Remember that failure
results in a shift up or down, and that the only action available from the double-walled exit states is Exit.

(g) [1 pt] What is the optimal value V ∗(A)?

(h) [1 pt] When running value iteration, what is the smallest value of k for which Vk(A) will be non-zero?
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(i) [1 pt] What will Vk(A) be when it is first non-zero?

(j) [1 pt] After how many iterations k will we have Vk(A) = V ∗(A)? If they will never become equal, write never.

Finally, consider the following mini-grid (rewards shown on left, state names shown on right).

In this scenario, the discount is γ = 1. The failure probability is actually f = 0, but, now we do not actually know the
details of the MDP, so we use reinforcement learning to compute various values. We observe the following transition
sequence (recall that state X is the end-of-game absorbing state):

s a s′ r
A Right R 0
R Exit X 16
A Left L 0
L Exit X 4
A Right R 0
R Exit X 16
A Left L 0
L Exit X 4

(k) [2 pts] After this sequence of transitions, if we use a learning rate of α = 0.5, what would temporal difference
learning learn for the value of A? Remember that V (s) is intialized with 0 for all s.

(l) [2 pts] If these transitions repeated many times and learning rates were appropriately small for convergence,
what would temporal difference learning converge to for the value of A?

(m) [2 pts] After this sequence of transitions, if we use a learning rate of α = 0.5, what would Q-learning learn for
the Q-value of (A, Right)? Remember that Q(s, a) is initialized with 0 for all (s, a).

(n) [2 pts] If these transitions repeated many times and learning rates were appropriately small for convergence,
what would Q-learning converge to for the Q-value of (A, Right)?
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Q7. [8 pts] Utilities: Low/High
After a tiring day of eating food and escaping from ghosts, Pacman heads to the casino for some well-deserved rest
and relaxation! This particular casino has two games, Low and High, which are both free to play.

The two games are set up very similarly. In each game, there is a bin of marbles. The Low bin contains 5 white and
5 dark marbles, and the High bin contains 8 white and 2 dark marbles:

Low	
  
$100	
  

High	
  
$1000	
  

Play for each game proceeds as follows: the dealer draws a single marble at random from the bin. If a dark marble
is drawn, the game pays out. The Low payout is $100, and the High payout is $1000. The payout is divided evenly
among everyone playing that game. For example, if two people are playing Low and a dark marble is drawn, they each
receive $50. If a white marble is drawn, they receive nothing. The drawings for both games are done simultaneously,
and only once per night (there is no repeated play).

(a) [2 pts] Expectations. Suppose Pacman is at the casino by himself (there are no other players). Give his
expected winnings, in dollars:

(i) [1 pt] From playing a single round of Low:

(ii) [1 pt] From playing a single round of High:

(b) [6 pts] Preferences. Pacman is still at the casino by himself. Let p denote the amount of money Pacman
wins, and let his utility be given by some function U(p). Assume that Pacman is a rational agent who acts to
maximize expected utility.

(i) [3 pts] If you observe that Pacman chooses to play Low, which of the following must be true about U(p)?
Assume U(0) = 0. (circle any that apply)

U(50) ≥ U(1000) U(100) ≥ U(1000)

1
2U(100) ≥ 2

10U(1000) U(50) ≥ U(100)

(ii) [3 pts] Given that Pacman plays Low, which of the following are possibilities for U(p)? You may use
3
√

100 ≈ 4.6, although this question should not require extensive calculation. (circle any that apply)

p − p 2p − 1 p2 3
√
p
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