
CS 188
Fall 2018

Introduction to
Artificial Intelligence Practice Final

• You have approximately 2 hours 50 minutes.

• The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation. All short answer sections can be successfully answered in a few sentences AT MOST.
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To earn the extra credit, one of the following has to hold true. Please circle and sign.

A I spent 2 hours and 50 minutes or more on the practice exam.

B I spent fewer than 2 hours and 50 minutes on the practice exam, but I believe I have solved all the questions.

Signature:

Follow the directions on the website to submit the practice exam and receive the extra credit.



Q1. [11 pts] Search and Probability
(a) Consider a graph search problem where for every action, the cost is at least ε, with ε > 0. Assume the heuristic

is admissible.

(i) [1 pt] [true or false] Uniform-cost graph search is guaranteed to return an optimal solution.

(ii) [1 pt] [true or false] The path returned by uniform-cost graph search may change if we add a positive
constant C to every step cost.

(iii) [1 pt] [true or false] A* graph search is guaranteed to return an optimal solution.

(iv) [1 pt] [true or false] A* graph search is guaranteed to expand no more nodes than depth-first graph search.

(v) [1 pt] [true or false] If h1(s) and h2(s) are two admissible A∗ heuristics, then their average f(s) =
1
2h1(s) + 1

2h2(s) must also be admissible.

(vi) [1 pt] [true or false] AND/OR search either returns “failure” or a list of actions from start to goal

(b) [3 pts] A, B, C, and D are random variables with binary domains. How many entries are in the following
probability tables and what is the sum of the values in each table? Write a “?” in the box if there is not enough
information given.

Table Size Sum

P (A|C)

P (A,D|+ b,+c)

P (B|+ a,C,D)

(c) [2 pts] Write all the possible chain rule expansions of the joint probability P (a, b, c). No conditional indepen-
dence assumptions are made.
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Q2. [8 pts] Games
For the following game tree, each player maximizes their respective utility. Let x, y respectively denote the top and
bottom values in a node. Player 1 uses the utility function U1(x, y) = x.
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P2 P2 P2

(a) Both players know that Player 2 uses the utility function U2(x, y) = x− y.

(i) [2 pts] Fill in the rectangles in the figure above with pair of values returned by each max node.

(ii) [2 pts] You want to save computation time by using pruning in your game tree search. On the game
tree above, put an ‘X’ on branches that do not need to be explored or simply write ‘None’. Assume that
branches are explored from left to right.
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Figure repeated for convenience
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(b) Now assume Player 2 changes their utility function based on their mood. The probabilities of Player 2’s utilities
and mood are described in the following table. Let M,U respectively denote the mood and utility function of
Player 2.

P (M = happy) P (M = mad)
a b

M = happy M = mad
P (U2(x, y) = −x | M) c f
P (U2(x, y) = x− y | M) d g
P (U2(x, y) = x2 + y2 | M) e h

(i) [4 pts] Calculate the maximum expected utility of the game for Player 1 in terms of the values in the game
tree and the tables. It may be useful to record and label your intermediate calculations. You may write
your answer in terms of a max function.
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Q3. [12 pts] Value of Gambling and Bribery
The local casino is offering a new game. There are two biased coins that are indistinguishable in appearance. There
is a head-biased coin, which yields head with probability 0.8 (and tails with probability 0.2). There is a tail-biased
coin, which yields tail with probability 0.8 (and head with probability 0.2).

At the start of the game, the dealer gives you one of the two coins at random, with equal probability. You get to
flip that coin once. Then you decide if you want to stop or continue. If you choose to continue, you flip it 10 more
times. In those 10 flips, each time it yields head, you get $1, and each time it yields tail, you lose $1.

(a) [1 pt] What is the expected value of your earnings if continuing to play with a head-biased coin?

(b) [1 pt] What is the expected value of your earnings if continuing to play with a tail-biased coin?

(c) [3 pts] Suppose the first flip comes out head.

(i) [1 pt] What is the posterior probability that the coin is head-biased?

(ii) [1 pt] What is the expected value of your earnings for continuing to play?

(iii) [1 pt] Which is the action that maximizes the expected value of your earnings? # Continue # Stop

(d) Suppose the first flip comes out tail.

(i) [1 pt] What is the posterior probability that the coin is tail-biased?

(ii) [1 pt] What is the expected value of your earnings for continuing to play?

(iii) [1 pt] Which is the action that maximizes the expected value of your earnings? # Continue # Stop

(e) [1 pt] What is the expected value of your earnings after playing the game optimally one time?

(f) [3 pts] Suppose again that the first flip yields head. The dealer knows which coin you picked. How much are
you willing to pay the dealer to find out the type of the coin? Assume that your utility function is the amount
of money you make.
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Q4. [6 pts] Encrypted Knowledge Base
We have a propositional logic knowledge base, but unfortunately, it is encrypted. The only information we have is
that:

• Each of the following 12 boxes contains a propositional logic symbol (A, B, C, D, or E) or a propositional
logic operator and

• Each line is a valid propositional logic sentence.
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(a) [3 pts] We are going to implement a constraint satisfaction problem solver to find a valid assignment to each
box from the domain {A, B, C, D, E, ∧, ∨, ¬, ⇒, ⇔}.
Propositional logic syntax imposes constraints on what can go in each box. What values are in the domain of
boxes 1-6 after enforcing the unary syntax constraints?

Box Remaining Values

1

2

3

4

5

6
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(b) [2 pts] You are given the following assignment as a solution to the knowledge base CSP on the previous page:

¬ A
B⇒ A
D
C ∨ B
D ∨ E

Now that the encryption CSP is solved, we have an entirely new CSP to work on: finding a model. In this new
CSP the variables are the symbols {A, B, C, D, E} and each variable could be assigned to true or false.

We are going to run CSP backtracking search with forward checking to find a propositional logic model M that
makes all of the sentences in this knowledge base true.

After choosing to assign C to false, what values are removed by running forward checking? On the table of
remaining values below, cross off the values that were removed.

Symbol Remaining Values

A T F

B T F

C T F

D T

E T F

(c) [2 pts] We eventually arrive at the model M = {A = False,B = False, C = True,D = True,E = True} that
causes all of the knowledge base sentences to be true. We have a query sentence α specific as (A ∨ C) ⇒ E.
Our model M also causes α to be true. Can we say that the knowledge base entails α? Explain briefly (in one
sentence) why or why not.
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Q5. [10 pts] The Nature of Discounting
Pacman in stuck in a friendlier maze where he gets a reward every time he visits state (0,0). This setup is a bit
different from the one you’ve seen before: Pacman can get the reward multiple times; these rewards do not get ”used
up” like food pellets and there are no “living rewards”. As usual, Pacman can not move through walls and may take
any of the following actions: go North (↑), South (↓), East (→), West (←), or stay in place (◦). State (0,0) gives
a total reward of 1 every time Pacman takes an action in that state regardless of the outcome, and all other states
give no reward.

You should not need to use any other complicated algorithm/calculations to answer the questions below. We remind
you that geometric series converge as follows: 1 + γ + γ2 + · · · = 1/(1− γ).

(a) [2 pts] Assume finite horizon of h = 10 (so Pacman takes exactly 10 steps) and no discounting (γ = 1).

Fill in an optimal policy:

(available actions: ↑, ↓,→,←, ◦)

Fill in the value function:

(b) The following Q-values correspond to the value function you specified above.

(i) [1 pt] The Q value of state-action (0, 0), (East) is:

(ii) [1 pt] The Q value of state-action (1, 1), (East) is:

(c) Assume finite horizon of h = 10, no discounting, but the action to stay in place is temporarily (for this sub-point
only) unavailable. Actions that would make Pacman hit a wall are not available. Specifically, Pacman can not
use actions North or West to remain in state (0, 0) once he is there.

(i) [1 pt] [true or false] There is just one optimal action at state (0, 0)

(ii) [1 pt] The value of state (0, 0) is:

(d) [2 pts] Assume infinite horizon, discount factor γ = 0.9.

The value of state (0, 0) is:

(e) [2 pts] Assume infinite horizon and no discount (γ = 1). At every time step, after Pacman takes an action and
collects his reward, a power outage could suddenly end the game with probability α = 0.1.

The value of state (0, 0) is:

9



Q6. [12 pts] Sampling
Consider the following Bayes net. The joint distribution is not given, but it may be helpful to fill in the table before
answering the following questions.

P (A)
+a 23

– −a 13

A

B C

P (B|A)

+a +b 12
— +a −b 12
— −a +b 14
— −a −b 34

P (C|A)

+a +c 12
— +a −c 12
— −a +c 23
— −a −c 13

P (A,B,C)

+a +b +c

+a +b −c

+a −b +c

+a −b −c

−a +b +c

−a +b −c

−a −b +c

−a −b −c

We are going to use sampling to approximate the query P (C|+ b). Consider the following samples:

Sample 1 Sample 2 Sample 3

(+a,+b,+c) (+a,−b,−c) (−a,+b,+c)

(a) [6 pts] Fill in the following table with the probabilities of drawing each respective sample given that we are
using each of the following sampling techniques.

P (sample | method) Sample 1 Sample 2

Prior Sampling

Rejection Sampling

Likelihood Weighting

Lastly, we want to figure out the probability of getting Sample 3 by Gibbs sampling. We’ll initialize the sample to
(+a,+b,+c), and resample A then C.

(b) [1 pt] What is the probability the sample equals (−a,+b,+c) after resampling A?

(c) [1 pt] What is the probability the sample equals (−a,+b,+c) after resampling C, given that the sample equals
(−a,+b,+c) after resampling A?

(d) [1 pt] What is the probability of drawing Sample 3, (−a,+b,+c), using Gibbs sampling in this way?
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(e) [2 pts] Suppose that through some sort of accident, we lost the probability tables associated with this Bayes
net. We recognize that the Bayes net has the same form as a näıve Bayes problem. Given our three samples:

(+a,+b,+c), (+a,−b,−c), (−a,+b,+c)

Use näıve Bayes maximum likelihood estimation to approximate the parameters in all three probability tables.

P (A)
+a

– −a
P (B|A)

+a +b

— +a −b

— −a +b

— −a −b

P (C|A)

+a +c

— +a −c

— −a +c

— −a −c

(f) [1 pt] What problem would Laplace smoothing fix with the maximum likelihood estimation parameters above?
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Q7. [10 pts] Chameleon
A team of scientists from Berkeley discover a rare species of chameleons. Each one can change its color to be blue or
gold, once a day. The probability of colors on a certain day are determined solely by its color on the previous day.

The team spends 5 days observing 10 chameleons changing color from day to day. The recorded counts for the
chameleons’ color transitions are below.

# of Ct+1|Ct t = 0 t = 1 t = 2 t = 3

# of Ct+1 = gold|Ct = gold 0 0 8 2

# of Ct+1 = blue|Ct = gold 7 0 0 8

# of Ct+1 = gold|Ct = blue 0 8 2 0

# of Ct+1 = blue|Ct = blue 3 2 0 0

(a) [3 pts] They suspect that this phenomenon obeys the stationarity assumption – that is, the transition proba-
bilites are actually the same between all the days. Estimate the transition probabilites P (Ct+1|Ct) from the
above simulation.

P (Ct+1|Ct)

P (Ct+1 = gold|Ct = gold)

P (Ct+1 = blue|Ct = gold)

P (Ct+1 = gold|Ct = blue)

P (Ct+1 = blue|Ct = blue)

(b) [2 pts] Further scientific tests determine that these chameleons are, in fact, immortal. As a result, they want
to determine the distribution of a chameleon’s colors over an infinite amount of time.

Given the estimated transition probabilities, what is the steady state distribution for P (C∞)?

P (C∞)

P (C∞ = gold)

P (C∞ = blue)
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The chameleons, realizing that these tests are being performed, decide to hide. The scientists can no longer observe
them directly, but they can observe the bugs that one particular chameleon likes to eat. They know that the
chameleon’s color influences the probability that it will eat some fraction of a nest. The scientists will observe the
size of the nests twice per day: once in the morning, before the chameleon eats, and once in the evening, after the
chameleon eats. Every day, the chameleon moves on to a new nest.

(c) [1 pt] Draw a DBN using the variables Ct, Ct+1, Mt, Mt+1, Et, and Et+1. C refers to the color of the chameleon,
M is the size of a nest in the morning, and E is the size of that nest in the evening.

When the chameleon is blue, it eats half of the bugs in the chosen nest with probability 1/2, one-third of the bugs
with probability 1/4, and two-thirds of the bugs with probability 1/4.

When the chameleon is gold, it eats one-third, half, or two-thirds of the bugs, each with probability 1/3.

(d) [4 pts] You would like to use particle filtering to guess the chameleon’s color based on the observations of M
and E. You observe the following population sizes: M1 = 24, E1 = 12, M2 = 36, and E2 = 24. Fill in the
following tables with the weights you would assign to particles in each state at each time step.

State at t = 1 Weight

Blue

Gold

State at t = 2 Weight

Blue

Gold
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Q8. [10 pts] Perceptron
We would like to use a perceptron to train a classifier for datasets with 2 features per point and labels 1 or 0.

Let’s use a learning rate of α = .25. Consider the following labeled training data:

Features Label
(x1, x2) y∗

(-1,2) 1
(3,-1) 0
(1,2) 0
(3,1) 1

(a) [2 pts] Our two perceptron weights have been initialized to w1 = 2 and w2 = −2. After processing the first
point with the perceptron algorithm, what will be the updated values for these weights?

(b) [2 pts] After how many steps will the perceptron algorithm converge? Write “never” if it will never converge.

Note: one steps means processing one point. Points are processed in order and then repeated, until convergence.

(c) Instead of the standard perceptron algorithm, we decide to treat the perceptron as a single node neural network
and update the weights using gradient descent on the loss function.

The loss function for one data point is Loss(y, y∗) = (y − y∗)2, where y∗ is the training label for a given point
and y is the output of our single node network for that point.

(i) [3 pts] Given a general activation function g(z) and its derivative g′(z), what is the derivative of the loss
function with respect to w1 in terms of g, g′, y∗, x1, x2, w1, and w2?

∂Loss
∂w1

=

(ii) [2 pts] For this question, the specific activation function that we will use is:

g(z) = 1 if z ≥ 0 and = 0 if z < 0

Given the following gradient descent equation to update the weights given a single data point. With initial
weights of w1 = 2 and w2 = −2, what are the updated weights after processing the first point?

Gradient descent update equation: wi = wi − α∂Loss
∂w1

(iii) [1 pt] What is the most critical problem with this gradient descent training process with that activation
function?
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